
A Method for Exchanging Valuable Data:

How to Realize Matching Oblivious Transfer

Shin’ichiro Matsuo (*,**) Wakaha Ogata(*)

(*)Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552 Japan
matsuo@crypt.ss.titech.ac.jp, wakaha@ss.titech.ac.jp

(**)NTT DATA Corporation
890-12 Shin-Kawasaki Mitsui Bldg. West Tower 15F,

Kashimada, Kawasaki-Shi, Saiwai-ku, Kanagawa, 212-0058 Japan
matsuosn@nttdata.co.jp

Abstract: Financial services over the Internet, the exchange of valu-
able digital data, such as digital money, payment information and digital
contents are expected to become major business. These services require
privacy for the participant’s behavior, security against malicious users and
fairness for matching. The concept “Matching Oblivious Transfer (MOT)”
[MO03] was proposed to satisfy these requirements.

In this paper, we propose a practical protocol of MOT based on public
key cryptography and VSS. In this protocol, once a participant sends an
order to the market, no interaction between each participant and the market
is needed. Thus our protocol is practical.

Keywords: Electronic market, matching, oblivious transfer and secret
sharing.

1 Introduction

Due to the widespread penetration of the Internet, many types of financial
transactions, i.e. Internet banking, online auction, trading stocks, online
shopping and so on, are being conducted over the Internet. In particular, the
scale of online stock trading business is growing rapidly. In the near future,
we will trade other valuable digital data as music or movie files, vouchers and
coupons over the Internet. Thus, we need to construct a secure and efficient

1

scheme for trading such kinds of digital data. The trading system, hereafter
we call it the ‘market’ system, must support multiple sellers and buyers at
one time. The sellers want to obtain digital money in return for providing
some kind of digital data, and the buyers want to obtain the digital data in
return for the digital money. The value and price of these digital data varies
according to time and occasion. Everyone have her/his own intended price
for these digital data. The market matches digital data to digital money
according to sellers/buyer’s intended order price and some reasonable rules.

When we construct such a market system, we must consider several secu-
rity features. The market system must preserve the privacy of seller/buyer’s
order price. A buyer obtains only matched digital data, and a seller obtains
only matched digital money. The concept of “Matching Oblivious Transfer
(MOT)” which can achieve this was described in [MO03]. In this paper, we
propose a practical and secure MOT protocol by using a public key cryp-
tosystem and distributed servers. In this protocol, we use a communication
model that uses broadcasting, and once a participant sends an order to the
market, no interaction between each participant and the market is needed.
This significantly lightens the round complexity of this protocol. The proto-
col in [MM01] has O(nl) round complexity and communication complexity
for matching, where n is the number of participants and l is the range of
prices. Our protocol has only O(1) round complexity and O(l) + O(n) com-
munication complexity for matching and exchange, both of which are quite
small. Our protocol has fairness, confidentiality of digital information, pri-
vacy, and anonymity as security features.

Related Work: To send only specified data to a party while preserving
privacy, we can use the oblivious transfer (OT) protocol (see Appendix A).
In 1-out-of-N OT, the sender knows N values and would like to let the re-
ceiver choose any one of them in such a way that the receiver does not learn
of the other values, and the sender remains oblivious to the value chosen by
the receiver. 1-out-of-N OT was introduced by Brassard et al. in [BCR86].
Aiello et al. proposed a protocol called “priced oblivious transfer” [AIR01]
in which a receiver can buy valuable data while hiding his choice and en-
suring financial privacy; the provider can sell valuable data while preserving
confidentiality of the data not chosen by the receiver. However, none of
these schemes provide a matching mechanism.

On the other hand, there are many matching protocols for one seller and
multiple buyers that preserve the buyer’s privacy. These protocols are vari-
ants of the “sealed-bid auction protocols”, which was introduced by Frankrin

2

et al. in [FR96]. The first matching protocol for multiple sellers and buy-
ers was proposed by Matsuo and Morita [MM01]. Crescenzo proposed a
stock purchase protocol which keeps hidden the sell/buy amounts [Cre01].
However, none of these protocols have an exchange mechanism.

There is no research or published protocol that can realize the market
system, i.e. that can securely match multiple sellers/buyers and exchange
digital data.

2 Matching Oblivious Transfer [MO03]

Matching oblivious transfer (MOT) is a multiparty protocol for the market
M of sellers and buyers. In MOT, sellers and buyers trade valuable digital
data. In this paper, we focus on the stock market and denote these valuable
data as ‘stock’.

We assume the following situation. There are some sellers USi(i =
1, 2, · · ·) who have digitized stocks of the same company. Each seller USi

wants to sell her stock di for some price PSi in the market. On the other
hand, there are some buyers UBj (j = 1, 2, · · ·) who want to buy the digital
stock in return for digital money mj for some price PBj . For such trades,
each seller makes a sell-order OSi = (di, PSi) for some i, and posts it to the
market. Similarly, each buyer makes a buy-order OBj = (mj , PBj) and posts
it to the market.

The market accepts sell-orders from sellers and buy-orders from buyers,
and then matches a sell-order to a buy-order according to some relation R.
That is, the market evaluates R for all sell/buy orders, and matches a sell
order OSi and buy order OBj if R(OSi , OBj) holds. If R(OSi , OBj) holds,
only USi gets mj and only UBj gets di from the market.

When a protocol conducted by sellers, buyers and the market meets the
following requirements, this protocol is an MOT protocol.

Correctness of exchange: If the sell-order OSi from seller USi and
the buy-order OBj from buyer UBj are matched, then USi gets the digital
money in OBj and UBj gets the digital stock in OSi .

Confidentiality of digital data: The market cannot get any digital
money or any digital stocks. No seller can get any digital money nor any
digital stock except the digital money that matches her sell-order. No buyer
can get any digital money nor any digital stock except the digital stock(s)
that match his buy-order.

Confidentiality of prices: No one knows the prices in each order and
the number of orders for each price.

3

Anonymity: No one knows who got which digital money/stock.
Robustness: The market can reject irregular orders and seller/buyer’s

irregular actions in this protocol.

In this paper, we consider the following matching rules:

1. If a sell-order and a buy-order have the same price, then these orders
should be matched.

2. If more than one sell/buy orders which have the same price, then the
first order should be matched to a buy-order/sell-order.

These rules are used in many actual markets, and are quite reasonable.

3 Proposed Scheme

In this section, we show first a high level description of our scheme to il-
lustrate how we assure security against customer’s abuse. We then show a
detailed protocol to explain how we assure the privacy of customer’s choice
with distributed servers.

3.1 High-level description

We assume that there is one trusted server in the market and prices of stocks
are in the range of 1 ≤ i ≤ l. The market server M has variables for sellers
C

(S)
i and for buyers C

(B)
i for each i = {1, 2, . . . , l}, which indicates a current

identifier of sell/buy order for price i. The initial value of each variable is
a random number, however C

(S)
i and C

(B)
i begin with the same number for

each i.
The public key PK

(S)
i,c and the private key SK

(S)
i,c , which are used to

encrypt and decrypt digital stock, are computed deterministically from the
price i and the value c = C

(S)
i of the order. Similarly, the public key PK

(B)
i,c

and the private key SK
(B)
i,c , which are used to encrypt and decrypt digital

money, are computed deterministically.
To avoid heavy round complexity, we use broadcast communication for

matching and exchange. The high-level description is as follows.

Setup: M initializes all variables. M generates random numbers ri and

C
(B)
i = C

(S)
i = ri (i = 1, . . . , l). (1)

4

Sell-order subprotocol: We suppose seller US wants to make an order
to sell her stock at price PS . Let d be the digital stock.

Step1. M performs the following procedures for all i ∈ {1, 2, . . . , l}. M

makes public key PK
(S)
i,c from c = C

(S)
i . M then creates X(i) which

indicates order price i and computes digital signature sig(i) for X(i).
M sets EX(i) = (X(i), sig(i)). Next, M makes private key SK

(B)
i,c from

c. M then chooses partial keys SK
(B),(1)
i,c and SK

(B),(2)
i,c randomly and

ensures that they satisfy

SK
(B),(1)
i,c + SK

(B),(2)
i,c = SK

(B)
i,c .

Finally, M sets DKi = (PK
(S)
i,c , EX(i), SK

(B),(1)
i,c).

M then executes (1, l)−OT with US . In this OT, US receives only
DKPS

.

Step2. US encrypts d with PK
(S)
i,c , and gets EE as a result of this encryp-

tion. She then sends EE, X(PS) and sig(PS) to M .

Step3. M verifies the signature sig(PS) by using X(PS) and its public key.
M then executes (1, l)-OT with US . In this OT, US receives only
SK

(B),(2)
PS ,c . US can get SK

(B)
PS ,c from SK

(B),(1)
PS ,c and SK

(B),(2)
PS ,c .

Next, M inserts EE into its DBS . This database is for selling stock.
M then updates C

(S)
PS

as

C
(S)
PS

= C
(S)
PS

× rPS
.

Buy-order subprotocol: The higher description of this protocol is the
same as the Sell-order subprotocol.

Broadcast subprotocol: This subprotocol is performed periodically.

Step1. M broadcasts all information in DBB and DBS to all buyers and
sellers.

Step2-S. US decrypts each encrypted digital money in DBB using SK
(B)
i,c

and checks the validity of the obtained digital money. If it is valid
digital money, she gets it as matched digital money m.

5

Step2-B. Similarly, UB decrypts each encrypted stock in DBS using SK
(S)
i,c

and checks the validity of the obtained stock.

Remember that all keys are distinct. Then for each encrypted digital
stock EE in DBS , the result of decryption in step2-B is d for matched data,
random data for other cases. This means that UB with SK

(S)
i,c can get only

the digital stock d that matches his buy order. Similarly, US with SK
(B)
i,c

can get only the digital money m that matches her sell order.
If there is no matching stock for UB, UB cannot obtain any stock. How-

ever, if some seller makes, at a later time, a sell-order that matches UB,
the order will be inserted into DBS and UB will be able to obtain it at a
later broadcast. Similarly, US can obtain matched digital money when a
buy order that matches US is inserted into DBB.

3.1.1 How to make secure encryption and decryption keys

In our scheme, all keys must be deterministic with price i, variable c and
order kind, sell or buy. Further, they must be distinct and chosen such that
no one can guess SK

(S)
i,c /SK

(B)
i,c from the other keys.

To meet these requirements, we construct public and private keys as
follows.

Let p and q be large primes s.t. p − 1|qL where L ≥ 2l and consider a
multiplicative group generated by a generator g with order p. Let α be the
L-th root of 1 on mod p, r be a random number with order q on mod p.
The public keys and private keys are calculated as follows.

SK
(S)
i,c = αirC

(S)
i mod p, PK

(S)
i,c = gSK

(S)
i,c

SK
(B)
i,c = αi+lrC

(B)
i mod p, PK

(B)
i,c = gSK

(B)
i,c

C
(S)
i and C

(B)
i are calculated as,

C
(S)
i = rj

i mod q, (j = 1, 2, . . .)

C
(B)
i = rk

i mod q(k = 1, 2, . . .).

Here, ri is a random number. Then, all of the above requirements are
satisfied. These keys can be used in an ElGamal cryptosystem.

6

3.2 Protocol with distributed market servers

3.2.1 How to assure security and privacy

To achieve confidentiality of prices, we use a verifiable secret sharing scheme
(VSS) and we split the functionality of the market between server Mp and
multiple servers M1, . . . , Mn. Mp only makes distributed information of
price information X(i) to avoid creating irregular orders by seller/buyer and
obtaining order price by the market server. Mp does not deal with any in-
formation sent from seller/buyer. M1, . . . , Mn manage variables C

(S)
i , C

(B)
i

and creates encryption and decryption keys in distributed manner. There
are up to t − 2 malicious servers, and n = 2t. Order prices PS and PB

are distributed using VSS, and all operations for C
(S)
i , C

(B)
i are conducted

by using a homomorphic (t, n) threshold VSS scheme [GRR98]. Updates
of variables are executed by using the homomorphism of VSS and multi-
plication of secrets over VSS. We use the (1, l)-OT protocol to deliver only
appropriate keys while preserving buyer’s and seller’s privacy.

3.2.2 Setup

The market servers publish g, r and α as public parameters.
To initialize C

(S)
i , C

(B)
i , n servers jointly generate random numbers ri,

and set them as eq. (1). The values of C
(B)
i and C

(S)
i are always distributed

among the servers, and less than t servers cannot know them. ri is also
distributed to all servers.

3.2.3 Sell-order subprotocol

Step1-1. Let ci be the current value of C
(S)
i and ci,j be the j-th share of

the current value of C
(S)
i . As we showed in 3.1.1, the public key PK

(S)
i,c

equals gαirci . Here,
ci =

∑

0≤j≤t

ci,jλj

where λj is a Lagrange coefficient. Thus,

gαirci = (gαi
)rci = (gαi

)
∏

j
(rci,j)λj

.

To make the public key while hiding its from any t − 2 servers, the
market servers execute the following procedure.

7

For all i, each of t servers of Mj(1 ≤ j ≤ n) locally calculates rci,j .
Two servers then jointly calculate

PK
(S),(1)
i,c = (gαi

)
∏

j
(rci,j)λj

,

and encrypt it with seller’s public key PkUS . They then gets EPK
(S),(1)
i,c

as a result. On the other hand, each of the remaining t− 2 servers en-
crypts (rci,j)λj . They jointly collect EPK

(S),(2)
i,c = (Enc〈PkUS〉((rci,j)λj), · · ·)

for all i. Here, Enc〈key〉(mes) represents the ciphertext of message
mes created using the public key key.

Step1-2. For all i, let X(i) = (X(i)
1 , . . . , X

(i)
l) and X

(i)
k be 1 if i = k and

0 otherwise. Mp makes n shares of all X
(i)
k for all i, k ∈ {1, 2, . . . , l}.

Let x
(i)
k,j be a share of X

(i)
k for Mj . Mp adds its digital signatures

sig(i,j,k) to all x
(i)
k,j . Next Mp encrypts (x(i)

k,j , sig
(i,j,k)) for all i, j, k with

US ’s public key PkUS . Then Mp calculates the hash value H
(i)
j =

H(x(i)
1,j || · · · ||x(i)

l,j) for all i, and shuffles them. Here H is a collision
intractable one-way hash function. Finally Mp sends

EX
(i)
j = (Enc〈PkUS〉(x(i)

1,j , sig
(i,j,k)), . . . , Enc〈PkUS〉(x(i)

l,j), H
(π(i))
j)

for all i to Mj(1 ≤ j ≤ n).

Step1-3. Each server Mj generates keys SK
(B)
i,j,c for all i where c is the

current value of C
(S)
i .

SK
(B)
i,j,c = αirci,j

Mj chooses partial keys SK
(B),(1)
i,j,c and SK

(B),(2)
i,j,c randomly but ensures

that
SK

(B)
i,j,c = SK

(B),(1)
i,j,c + SK

(B),(2)
i,j,c .

Finally, each Mj encrypts SK
(B),(1)
i,j,c and SK

(B),(2)
i,j,c with US ’s public key

PkUS . The market servers collect ESK
(B),(1)
i,c as the set of all cipher-

texts of SK
(B),(1)
i,j,c for j, and ESK

(B),(2)
i,c as the set of all ciphertexts of

SK
(B),(2)
i,j,c for j.

Step1-4. The market servers set

DKi := (EPK
(S),(1)
i,c , EPK

(S),(2)
i,c , EX

(i)
1 , . . . , EX(i)

n , ESK
(B),(1)
i,c).

8

Market servers jointly execute (1, l)-OT with US . In this OT, US

receives only DKPS
.

Step2. Let i = PS . US decrypts EPK
(S),(1)
i,c and EPK

(S),(2)
i,c , and recon-

structs the public key from PK
(S),(1)
i,c and PK

(S),(2)
i,c = (a1, · · · , at−2)

as follows.
PK

(S)
i,c = (. . . (PK

(S),(1)
i,c)a1)a2 . . .)at−2

Next, US encrypts his digital stock with PK
(S)
i,c and gets EE as a

result. Then, US decrypts all items of EX
(PS)
j (1 ≤ j ≤ n) to obtain

x
(i)
k,j and sig(i,j,k) for all j, k. Finally, US sends EE, x

(PS)
k,j and sig(PS ,j,k)

for all k to Mj(1 ≤ j ≤ n).

Step3. Each server verifies the validity of sig(PS ,j,k). They then verify that
there exists a stored hash value H

π(i)
j that equals the hash value of the

concatenation of all x
(PS)
k,j .

Next, the servers store EE into DBS . The servers then send ESK
(B),(2)
PS ,c

to US by using (1, l)-OT. US can get SK
(B)
PS ,c from ESK

(B),(1)
PS ,c and

ESK
(B),(2)
i,c by using the reconstruction protocol of VSS.

Finally, all servers jointly update the variables as follows.

C
(S)
i := C

(S)
i X

(PS)
i ri − C

(S)
i X

(PS)
i + C

(S)
i (i = 1, . . . , l)

3.2.4 Buy-order subprotocol

The buy-order subprotocol is similar to the sell-order subprotocol.

3.2.5 Broadcast subprotocol

This subprotocol is same as the one described in3.1. Each Mj can see all
broadcast information. However, the contents in the database are encrypted
and since no Mj knows the keys, the market learns nothing.

3.3 Analysis

Security: Correctness of exchange is assured because encryption/decryption
keys are delivered accoring to C

(S)
i /C

(B)
i of each sell/buy order and digital

data/money are delivered by broadcasting. Confidentiality of digital data is
assured because broadcasted digital data/money is encrypted, and one key

9

can not be guessed easily from the other keys. Confidentiality of price is
assured through the use of VSS and key delivery via (1, l)-OT. Anonymity
is assured through the use of broadcasting and VSS. Robustness is assured
by the check procedure in step3.

Efficiency: In this protocol, we use (1, l)-OT where l is the range of
prices and exchanges are broadcast. In our scheme, the round complex-
ity is O(1) and the communication complexity is O(l) + O(n) for matching
and exchange, where n is the number of customers. However, the existing
scheme[MM01] has O(nl) round complexity and communication complexity
for matching. Our scheme offers improved efficiency.

4 Conclusion

We proposed a practical protocol to realize “matching oblivious transfer.”
It can exchange digital data and digital money according to some rules as
in an actual market while preserving privacy. Its security is based on public
key cryptography, VSS and OT. Because this protocol uses the broadcast
communication model, we have significantly reduced the round complexity
and communication complexity.

References

[AIR01] B. Aiello, Y. Ishai and O. Reingold, Priced Oblivious Transfer;
How to sell Digital Goods, Advances in Cryptology - EURO-
CRYPT 2001, Lecture Notes in Computer Science, Vol.2045, pp.
119-135, 2001.

[BCR86] G. Brassard, C. Crépeau and J.-M. Robert, All-or-Nothing Dis-
closure of Secrets, Advances in Cryptology - Crypto ’86, Lecture
Notes in Computer Science, Vol.263, pp.234-238, 1987.

[BGW88] M. Ben-or, S. Goldwasser, and A. Widgerson, Completeness the-
orems for non-cryptographic fault-tolerant distributed computa-
tion, STOC ’88, pp.1-10, 1988.

[Cre01] G. D. Crescenzo, Privacy for the Stock Market, In Pre-
Proceedings of Financial Cryptography ’01, Grand Cayman,
BWI, February, 2001.

10

[EGL85] S. Evan, O. Goldreich and A. Lampel, A Randomized Proto-
col for Signing Contracts, Communications of the ACM, Vol.28,
No.6, pp. 637-647, 1985.

[FR96] M. Franklin and M. Reiter, The Design and Implementation of
a Secure Auction Service, IEEE Trans. on Software Engineering,
Vol.22, No.5 (1996).

[GRR98] Gennaro and Rabin and Rabin, Simplified VSS and Fast-track
Multiparty Computations with Applications to Threshold Cryp-
tography, PODC: 17th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, 1998.

[MM01] S. Matsuo and H. Morita, Secure protocol to construct elec-
tronic trading, IEICE Transactions on Fundamentals of Elec-
tronics, Communication and Computer Sciences, VOL.E84-A,
No.1, pp.281-288, January 2001.

[MO03] S. matsuo and W. Ogata, Matching Oblivious Transfer: How to
Exchange valuable data, IEICE Transactions on Fundamentals of
Electronics, Communication and Computer Sciences, VOL.E86-
A, No.1, pp.189-193, January 2003.

[NP01] M. Naor and B. Pinkas, Efficient Oblivious Transfer Protocols,
In proceedings of SODA 2001.

[NP99] M. Naor, B. Pinkas, Oblivious Transfer and Polynomial Evalua-
tion, Proc. of 31st ACM Symposium of Theory on Computing,
pp.245-254, 1999.

[Sha79] A. Shamir, How to Share a Secret, Communications of the ACM,
Vol.22, No.11, pp.612-613, 1979.

A Oblivious transfer

Oblivious transfer (OT) protocol is two-party protocol such that sender
Alice sends messages then chooser Bob receives one of them with hiding
which message he gets and anything about the other messages.

1-out-of-2 oblivious transfer, which we denote as (1, 2)-OT, is popular
type of OT protocols. In (1, 2)-OT, Alice sends message (m1,m2) to Bob.
Bob chooses index of message i ∈ {1, 2} which he wants to receive. After
(1, 2)-OT finished, Bob gets message mi, and receives nothing about another

11

message. At the same time, Alice cannot know about i. (1, 2)-OT was
suggested by Evan et al. [EGL85].

1-out-of-N oblivious transfer [BCR86], which we denote as (1, N)-OT, is
expanded from (1, 2)-OT. In (1, N)-OT, Alice sends messages (m1,m2, . . . , mN)
to Bob. Bob chooses index of message i(1 ≤ i ≤ N) which he wants to re-
ceive. After (1, N)-OT finished, Bob gets message mi and receives nothing
about other messages. Alice cannot know about i. Efficient (1, N)-OT pro-
tocol was proposed by Naor and Pinkas [NP99, NP01]. This (1, N)-OT can
be used to send a message of any data structure.

B Verifiable secret sharing

A secret sharing scheme (SS) is an important primitive to construct cryp-
tographic protocols. In SS, a dealer has secret information s and creates
n shares of this secret. Then he delivers each share to each player. Each
player cannot know anything about secret s from his share. However, only
when a qualified subset cooperate, they can reconstruct s from their shares.
Most of SSs are (t, n) threshold secret sharing, in which up to t− 1 players
cannot reconstruct shared secret, but with cooperation of t or more players,
they can reconstruct it. The most popular (t, n) threshold SS is Shamir’s
scheme proposed in [Sha79].

Verifiable secret sharing scheme (VSS) is a kind of secret sharing scheme
in which players can verify whether his share is correctly calculated from s,
Ben-or et al. proposed a popular VSS in [BGW88]. We use (k, n) threshold
VSS to construct trusted servers in the market.

Most SSs have homomorphism, which is important feature for crypto-
graphic protocols. Let (S1(s1), S2(s1), . . . , Sn(s1)) be shares of secret s1 and
(S1(s2), S2(s2), . . . , Sn(s2)) be shares of secret s2. Then s1 + s2 is recon-
structed from (S1(s1) + S1(s2), S2(s1) + S2(s2), . . . , Sn(s1) + Sn(s2)) in ho-
momorphic SS.

To realize multiplication of secrets which are shared by using VSS, we
can use a protocol proposed by Gennaro et al [GRR98].

12

